Ground truth description, ADAS and AD function validation. Road topology, dynamic objects and semantic scenarios
Traffic descriptions, CCTV-related events, trajectories, re-identification of subjects, action and behaviour recognition
Pixel-wise and polygonal description of images, sequences and volumes
Manufacturing, robotics, aerospace, traffic and smart city management, precise agriculture, etc
{"openlabel": {
"objects": {
"0": {"frame_intervals:
[(0,176),(200,1145)],
"name": "paola",
"object_data": {
"bbox": [{"name": "head",
"val": [10, 15, 30, 30]}],
"poly2d": [{"name": "shape",
"val":[23, 54, ...]}...}
Spatio-temporal description of entities of any class (e.g. “Person”, “Car”), including Polygons, Bounding Boxes, Points, Images, etc.
{"openlabel": {
"actions": {
"0": {"frame_intervals: [(0,176)],
"name": "coding_1",
"type": "#Coding",
"ontology_uid": 0},
"ontologies": {"0": "http://www.domain.org/ont/actions"}}
Temporal description of actions, with semantic content: “Overtaking”, “Pedestrian crossing”.
{"openlabel": {
"events": {
"0": {"frame_intervals: [(0,0)], "name": "coding_1",
"type": "#StartsTalking", "ontology_uid": 0},
"ontologies": {"0": "http://www.domain.org/ont/actions"}}
Point in time that triggers Actions or Contexts
{"openlabel": {
"context": {
"0": {"name": "sunny",
"type": "#Sunny",
"ontology_uid": 1}},
"ontologies":{"1": "http://www.domain.org/ont/concepts"}}
Atemporal description of contextual information of the scene: “Urban”, “DayTime”, “Raining”
{"openlabel": [...], {
"relations": {
"0": {"rdf_objects": [{
"type": "action", "uid":0}], "rdf_subjects": [{"type": "event", "uid": 0}], "type": "#Starts"}}}
Connection between Objects, Actions, Events and Contexts, using RDF triplets
Comments, questions and requests are welcome :)
If you wish to use VCD, add our cite to your bibliography:
M. Nieto, O. Senderos, and O. Otaegui, “Boosting AI applications: Labeling format for complex datasets,” SoftwareX, 2021, p. 100653, vol. 13 (https://doi.org/10.1016/j.softx.2020.100653).